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Abstract-The paper considers the application of regular parameter perturbation technique to obtain 
approximate solutions of heat-transfer problems with temperature-dependent thermal properties. For 
pure conduction, linearly varying thermal conductivity and heat capacity are considered and two examples 
are solved. Next, a conducting-convecting fin is treated with convective heat-transfer coefficient propor- 
tional to (AT)” with E = 0.25 for fin cooled by natural convection and E = -0.25 for fin heated by 
laminar condensation. Finally, a two-parameter perturbation is used to solve for temperature distribution 
in a conducting-convecting-radiating fin with temperature-dependent thermal conductivity. On com- 
paring the perturbation solutions with corresponding numerical solutions, the accuracy is found to be good. 

NOMENCLATURE 

cross-sectional area of fin; 

heat capacity; 
heat capacity at temperature To ; 
error function; 
complementary error function; 
fin parameter, = hb PL’/kA; 

emissivity of fin surface; 
nondimensional temperature, = T/To ; 
convective heat-transfer coefficient; 

thermal conductivity; 
thermal conductivity at zero temperature; 
fin length; 
a constant, equation (17); 

a constant, equation (26); 
fin parameter, = (hb PL’/kA)* : 
perimeter of fin cross-section; 

time ; 
T, To, temperature; 
T m> amplitude of sinusoidal temperature 

variation; 

u, function of q, equation (15); 

1: 

;, 

function of q, equation (16); 

transformed temperature, equation (7); 

K plate dimension; 

& L‘> rectangular coordinates; 

X, Y, nondimensional coordinates. 

Greek symbols 

P> a constant, equation (1); 

Y> a constant, equation (10); 
0,& nondimensional temperature; 

?> similarity variable, = x/2(kt/Co)*; 

c, Stefan-Boltzmann constant; 

E,~~,hr perturbation parameters. 

Subscripts 

0, ambient ; 
S, effective sink; 

b, fin base; 
sat, saturated condensate. 

INTRODUCTION 

HEAT conduction with temperature dependent thermal 
properties has been studied extensively and several 
approximate methods of treating such problems are 

available [l-3]. This paper adopts yet another ap- 
proach and utilises regular parameter perturbation 
procedure to obtain approximate solutions to heat 

transfer problems with either temperature dependent 
thermal conductivity or heat capacity or heat-transfer 
coefficient. For pure conduction problems, examples 
chosen to illustrate the procedure are two-dimensional 
conduction in a square plate with Dirichlet boundary 
conditions and linear thermal conductivity-tempera- 
ture variation; and heat diffusion into a semi-infinite 
medium with linear heat capacity-temperature depen- 
dence. Next, a conducting-convecting straight fin is 

considered, and temperature distribution is obtained 
for the case of heat transfer coefficient proportional to 
(AT)” with E = 0.25 or 0.33 for fin cooled by natural 
convection and E = - 0.25 for fin cooled by film boiling 
or heated by laminar condensation. 

The paper also adopts two-parameter perturbation 
to treat problems with two independent nonlinearities 
which for example arise for the case of simultaneous 
variation of two thermal properties, or when radiation 
interaction with one variable thermal property is in- 
voked. The procedure is applied to obtain second-order 
expansion solution for temperature distribution in a 

271 



272 A. AZIZ and J. Y. BE~ZIES 

conducting-convecting-radiating fin with temperature 
dependent thermal conductivity. 

The perturbation solutions are compared with 
numerical solutions and solutions based on other 

methods and found to be sufficiently accurate. 

PERTURBATION PROCEDURE AND EXAMPLES 

In the examples that follow the mathematical details 
have been kept to a minimum but further details are 

available elsewhere [4]. 

(a) Two-dimensional, steady conduction in a square 
plate with variable thermal conducticitJ 

For two-dimensional, steady conduction in a square 
plate with specified boundary temperatures (Fig. 1) 

FIG. 1. Temperature distribution in a square plate with 
temperature-dependent thermal conductivity. 

and thermal conductivity-temperature variation of 

the form 

k = k,,(l+fiT) (1) 

the Laplace equation may be written as 

with boundary conditions 

0(0, Y) = 0, 0(7& Y) = 0, 

0(X, 0) = 0, 0(X, 7~) = sin X 
(3) 

where 

0 = T/T,, X = ~LxIW, Y= ny/W, F = pTm. (4) 

For most materials and applications, E is small and 
a regular first order asymptotic expansion for 0 in the 
perturbation parameter E may be assumed as 

0 = 00 +ce1+0(&2). (5) 

Substituting (5) into (2) and comparing coefficients of 
zero and unit powers of E, equations for II0 and 8, with 
appropriate boundary conditions can be obtained. The 
complete first order solution is 

sinh Y sin X 

‘= >nhn 
___ + i; c 2 n=1,3 ,,,,._ II n(n2-4)nsinh2rr 

x cos2Y) sinnX. (6) 

Equations (2,3), however, admit exact solution. By 
introducing the Kirchoff transformation 

i‘ 

H 
v= k d0 = k&I + &82) (7) 

0 

into equations (2,3) one can obtain a linear problem 
in V. Employing the method of separation of variables, 

the solution for V is 

V= k. 
sinh Y sin X 

sinh n 
$61 c 

71.=1,3,.,.,x 

and the solution for 0 is 

(9) 

The perturbation temperature distributions at Y = 
rr/4 and Y = n/2 are compared with exact solutions in 
Fig. 1. Excellent agreement is obtained even for E as 
large as 0.6. Although results are shown for positive 

values of E, the same accuracy is obtained for negative 
values of E. 

(b) Transient heat d@iision into a semi-injnite medium 
with variable heat capacity 

The medium is assumed at temperature T = 0 for 
time t < 0 and its surface at x = 0 is suddenly changed 
to To at t = 0. The thermal conductivity is taken 
constant but the heat capacity is assumed to be of 
the form 

C = Co[l +1;(T-To)]. (10) 

The similarity equation for temperature distribution 
together with boundary conditions is 

F”+2’1[1+&(F- l)]F’ = 0 (11) 

r/=0, F=l; v/=co, F=O (12) 

where 

E = yTo (13) 

and primes denote differentiation with respect to ?I. 
As E is usually small, the solution for F can be 

assumed of the form of equation (5). Proceeding as 
before, the solution for zero-order problem F. is found 
to be erfc ‘I, which practically decays to zero for q > 3. 
To effect the solution for the first-order problem F, in 
closed form, the complementary error function rep- 
resenting F. is replaced by a third-order least square? 
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polynomial (accuracy kO.5 per cent) in the range 
O<r1<3andsoistheboundaryr1=ccbyq=3.The 
two-term perturbation solution thus obtained is 

F = erfcq+e[u + (u-0,3272)erfn] (14) 

where 

u = -Og708~4+O~600~5-O~1780$ 

+0~0259~7-0~0016~8 (15) 

v = 0.8798~ 3 -0.2842q4 + 0.0319$. (16) 

The perturbation solution is plotted in Fig. 2 for E = 0.5 
together with solutions using optimal linearisation [3] 
and variational method [s] and compared with the 
numerical solution based on Runge-Kutta method. 

I Ok , 

I\ ----- Perturbutnn solution 

ii 

- Numerical sol"tlon 

--- Optimally hnearlsed 
solution c31 

VarIatIonal solution c5: 

0 0.5 I.0 1’5 2.0 2.5 
7) 

I IG. 2. Temperature distribution in a semi-infinite solid 
with temperature dependent heat capacity. 

The perturbation solution is very close to numerical 
solution but the linearised and variational solutions 
are significantly in error. This is due to the fact that 
the latter both employ quadratic approximation for F. 
in generating the solution for F. This is rather poor 
whereas the third order polynomial utilised in the 
present work is a very accurate representation of FO. 

(c) Conducting-ConuectingJin with variable 

heat-transfer coejicient 
A straight fin of length L, cross-sectional area A and 

perimeter P exposed on both sides to free convective 
environment at temperature T, is considered. The 
commonly used boundary conditions of constant base 
temperature Tb and adiabatic tip are assumed. The 
thermal conductivity of the fin is taken constant while 
the convective heat-transfer coefficient h is assumed to 
be of the form 

h = m(T- T,)” (17) 

where m is a constant and E = 0.25 and 0.33 for 
laminar and turbulent conditions respectively. Equa- 
tion (17) is applicable to a horizontal fin but if the fin 
is vertical, h also depends on coordinate x. Measuring 
the axial distance from fin tip and using one-dimen- 

sional approximation, equations governing the tem- 
perature distribution can be written as 

!&ZOLI” = 0 

x=0, g=o: X=1,8=1 (19) 

where 

T- T. 
(j- 

hb PL* 

Tb- T,’ 
X=;, N*=p 

kA ’ 

hb = m(&-T,)‘. 
(20) 

Since a is small, 0 is assumed of the form of equation (5). 
Further, expressing (0, + ~0~)’ as exp[e ln(&, + EO,)] it 
can be shown by expansion that 

(Qo f&0,)’ 

= l+eln&+e2[~+f(ln&)‘1+Oo). (21) 

Proceeding as before and utilising (21), the solution for 
zero-order problem B,, is found to be 

O. = sech N cash NX. (22) 

It is found that the equation for first-order problem 
Or contains a nonhomogeneous term of the form 
N2 O0 In O. which according to (22) becomes 

N2 sech N(cosh NX In sech N + cash NX In cash NX) 

in which the presence of the second term precludes 
exact solution for Or. In practice, N does not exceed 2 
(optimum N = 1.4192 for minimum mass fin) and since 
0 < X < 1, the operating range of the fin is such that 
0 < NX < 2. For this range, the function cash NXln 
cash NX is approximated quite accurately by its eight- 
order truncated Maclaurin’s series. With this approxi- 
mation, the solution for Or is obtained. Thus, the 
complete first order solution becomes 

0 = sech N cash NX 

+~{CrcoshNX+C~XsinhNX 

-CJ[84+42(NX)2++$(NX)4 

+$&NX)6+&NX)*]} (23) 

where 

Cr =~sech2N(84+42N2+~N4+~N6+~N8) 

-$N tanh N sech N In sech N (24) 

C2 = +NsechNlnsechN, C3 = +sechN. (25) 

The perturbation solution is displayed in Fig. 3 for 
E = 0.25 and 0.33 curves A being for N = 1.0 and 
curves B being for N = 2.0. Comparison with the 
numerical solutions indicates high accuracy of the per- 
turbation solution. 

Consideration is now given to the case when the fin 
is cooled by film boiling or heated by laminar conden- 
sation. A horizontal fin of cross-sectional area A, 
perimeter P and length L heated by laminar conden- 
sation is considered. The heat-transfer coefficient is of 
the form 

h = ~I(T,,,-T)-~.~~ (26) 
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nonlinearities. Consider one-dimensional conduction 
in a straight fin of length L, cross-sectional area .4 
and perimeter P, the surface heat transfer involving 
simultaneous convection and radiation. Let the con- 
vective environment temperature and effective sink 
temperature be T, and 7;. Assuming the convective 
heat-transfer coefficient h and surface emissivity E, to 

be constant but allowing the thermal conductivity to 
vary according to 

FIG. 3. Temperature distribution in a conducting-convecting 
fin with temperature dependent heat-transfer coefficient. 

where 7&, is saturated condensate temperature and n 
is a constant which can be determined using Nusselt- 

Rohsenow theory [6]. The equation governing the 
temperature distribution in the fin is 

where 

L-T q+- 
hbPL2 

TM-T,’ 
&, E=----- 

k,4 

hb = r~(T,,,-q)-“~’ 
(28) 

and the coordinate Y is measured from the base of 

the fin. 
Lienhard and Dhir [6] have recently considered this 

problem and shown that for good fin design E = 0( 10) 
which gives a tip temperature of about 0.03 for adiabatic 
tip condition. Hence, the boundary condition at the tip 
may be approximated without much loss of accuracy 
by that of infinitely long fin. Equation (27) is solved 
subject to the boundary conditions 

x=0, ($=I; X = co, 4 = 0. (29) 

With E = N2 and F: = -0.25, equation (18) is identical 
to equation (27). Following the procedure adopted 
previously, the two-term perturbation solution of equa- 
tions (27 and 29) can be easily obtained as 

6 = [l-&E*(X+EiX2)]exp(-E*X). (30) 

The perturbation solution and numerical solution [6] 
are shown as curves C in Fig. 3 and agree very closely. 

(d) Conducting-convecting-radiating$n with variable 
thermal conductivity 

This example demonstrates the application of two- 
parameter perturbation to a problem involving two 

k = k,[l +p(T- T,)] (31) 

the energy equation and boundary conditions (constant 
base temperature Tb and adiabatic tip) may be written as 

-N*(&O,)-s2(Q4-0;) = 0 (32) 

x=0, $0; x=1,0=1 (33) 

where 

hPL2 
&, N2=-- 

k,A ’ 
Cl = fl?“b (34) 

E2 = 
E,oT:Pl.’ 

k A (radiation-conduction parameter). 
a 

As mentioned earlier, &I is usually small and for the case 

of weak radiation-conduction interaction, s2 is small. 
Therefore, an asymptotic expansion for 0 in .sr and ~~ 

may be assumed as 

s i 

0 = 1 c (-::-‘&hoi,j_i. 
j=O i=O 

The case of 0, = 0, = 0 is considered. The solution for 
the more general case can be obtained in a similar 
manner though the algebra is somewhat lengthy. 
Assuming second order expansion, 

Q = B~o+E~~,,+E,~,,+F~~,,+E~E~H~~+FZ~~~. (36) 

Substituting (36) into (32) and (33), taking 0, = OS = 0 
and equating the appropriate coefficients, boundary 
value problems for Boo, Ool,. . B20 can be obtained. 

For brevity, only the solutions are presented. These are 

Boo = sech N cash NX (37) 

t&r = *sech2 N[(cosh2NsechNcosh NX 

-cash 2NX)] (38) 

sech4 N 
010 = $;i-[(1-$cosh2N 

1” 
- &cosh 4N) sech N cash NX 

+$cosh2NX+a:cosh4NX- l] (39) 

Qo2 = &sech3 N[($sech2 Ncosh2 2N-#sech Ncosh 3N 

-fN tanh N) cash NX -$sech N cash 2N cash 2NX 

+#cosh3NX+jNXsinhNX] (40) 
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&I =: q{-cosh2NsechN+[~(3-_cosh?N 

-&cosh4N)sechNcosh2N+-54tfcosh3N 

+&cosh 5N + -&N sinh N] sech N cash NX 

-i( 1 -$cosh2N-&cosh4N)sech N cosh2NX 

-$$cosh3NX+ &sech Ncosh2Ncosh4NX 

-~coshS~~X-~NXsinhNX~ (41) 

020 = 
sech7 N 

~~~(~~osh2~~+~cosh4N-~)sechN 

+[(&$cosh2N-&cosh4N+&cosh2Ncosh4N 

+&cosh22N+&cosh24N)sechN+&cosh3N 

-&coshSN-&cosh7N 

-t-gN sinh N sech N] cash NX 

- (&cosh 2N+&cosh4N--i)sech N cosh2NX 

-&cosh3NX-(Tfscosh2N+&cosh N-h) 

x sech N cosh4NX+&cosh SNX+& 

x cash 7NX -$& NX sinh NX) . (42) 

In Fig. 4 the second order ~rturbation solutions for 
F.~ = 0.2 and O-6 for various values of parameter &I are 
compared with the corresponding numerical solutions, 
the parameter N being fixed at unity. For e2 = 0.2, the 
perturbation solutions match almost exactly with 
numerical solutions except for slight deviation for 
e1 = 0.6. As &2 increases, the accuracy of the per- 
turbation solutions decreases particularly at high 
values of&r. But even at Ed = 0.6 where the maximum 
discrepancy occurs. the perturbation tip temperature 

FIG. 4. Temperature distribution in a conducting-convect- 
ing-radiating fin with temperature dependent thermal con- 

ductivity. 

is still within 2 per cent of the numerical solution. 
Further calculations show that the accuracy of the 
perturbation solution increases as N increases and 
decreases as N is reduced. Sparrow and Niewerth [7] 
have found that for optimum operating conditions, 
~~ (N, in the notation of [7]) varies from 0.7 to 0 as 
N(,/N,, in the notation of [7]) varies from 0 to 1.4192. 
Hence, it is obvious that the perturbation solution 
would yield accurate temperature distribution {and 
hence heat flux and fin efficiency) over the major 
portion of the range of optimum operating conditions. 

CONCLUSIONS 

The solutions for the first two sample problems have 
shown that regular one-parameter perturbation tech- 

nique can be usefully employed to treat conduction 
problems with either temperature-dependent thermal 
conductivity or heat capacity. The accuracy of the per- 
turbation solutions compared with numerical solutions 
was excellent. The technique also yielded very accurate 
results when applied to fin cooled by natural convection 
or heated by condensation with heat-transfer coefficient 
proportional to fractional power of temperature differ- 
ence. For problems with simultaneous variation of two 
thermal properties or problems involving radiation 
coupled with one variable thermal property, accurate 
solutions can be obtained using the method of two- 
parameter perturbation. The solution for temperature 
distribution in a conducting-convecting-radiating fin 
with temperature-dependent thermal conductivity has 
confirmed the usefulness of this approach. 
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APPLICATION DES TECHNIQUES DE PERTURBATIONS AUX PROBLEMES 
DE TRANSFERT THERMIQUE AVEC PROPRIETES THERMIQUES VARIABLES 

R&rum&-L’article traite de ~application dune technique de perturbation a parametre regulier pour 
l’obtention de solutions approchees de problimes de transfert thermique avec propriktis thermiques 
dependant de la temperature. Dans le cas de la conduction pure, on a consider& une conductivite thermique 
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et une capacitt calorifique variant linkairement et dcux exemples sont r&olus. Ensuite. on a traite le cab 
d’une ailette en conduction-convection avec un coefficient de transfert par convection proportionnel :I 
(AT)” oti 6 = 0.25 lorsque I’ailette est refroidie par convection naturelle et t = 0.25 lorsque l’ailette cst 
chauffie par condensation laminaire. Enfin. une perturbation h deux parametres est utili& pour trouver 
la distribution de tempkrature dans une ailette h la fois conductrice. convectrice et rayonnante. avec unc 
conductivittthermique d&pendant de la tempbrature. Une comparaison des solutions de perturbation avec 

d’autres solution numkriques montre un bon accord. 

ANWENDUNG DER STtiR-METHODE AUF WffRMEtiBERGANGSPROBLEME 
MIT VERANDERLICHEN THERMISCHEN STOFFWERTEN 

Zusammenfassung-Fiir Naherungsl6sungen von WLrmeiibergangsproblemen mit temperaturabhlngigen 
Stoffwerten wird die Anwendbarkeit der gewdhnlichen Parameter-StGrmethode untersucht. Fiir Probleme 
der reinen Wiirmeleitung wurden linear-verinderliche therm&he Leitfihigkeit und Wlrmekapazitit 
herangezogen und zwei Beispiele gel&t. Weiterhin wurde ein Leitungs-Konvektionsproblem behandelt 
mit einem konvektiven Wirmeiibergangskoeffizienten proportional (A7’)‘mit i: = 0,25 fiir Rippenktihlung 
durch natiirliche Konvektion und c = -0,25 fiir Rippenheizung durch laminare Kondensation. 
Schliesslich wurde die Zweiparameter-St8rmethode verwendet fiir die LGsung der Temperaturverteilung 
in einem Rippenproblem mit Leitung, Konvektion und Strahlung bei temperaturabhgngiger WBrmeleit- 
fghigkeit. Der Vergleich der LBsungen nach der St6rmethode mit entsprechenden numerischen LBsungen 

reigt gute iibereinstimmung. 

nPMMEHEHME METOAA BO3MYUIEHMti AnR PEIllEHMR 3AAAq 
TEflnOnPOBOAHOCTM C FlEPEMEHHblMM TEnJlOBblMM CBOfiCTBAMM 

h+ioTaqHR - c nOMOUlbtO MeTOEi peryJtS4pHOrO BO3MyUEHHtl JlapaMCTpa IlOJlyWHbI Ilp&i6JlWXKeHHble 

PeUtCHMSI 3XlaY TCFtJIOnpOBOL,HOcTM C 3BBMcHMbIMM OT TCMnCpaTypbl TfXtJtOBblMM CBOkTBaMH. Ans 

CJy’GE4 9MCTOti TetI,lOtT~OBO~HOcTt4 ,,acCMOT,XHbl JttiH&iHO I/13MeHIItOU,HeCII K03@,tMUMeHTbl TennO- 

~POBODHOCTM M TennoeMKoci-M. YncneHHo petuettbt nea npclMepa. Aanee, pacch4oTpett KotinyKTti~~o- 

KOHRCKTMBHblti TCnJtOO6MeH Ha “OBepXHOCTM pe6pa, KOrna KOX,,(t)HUH‘L!HT KOHBeKTHBHOrO TennO- 

06MeHa nponopwotianeti (AT)’ npti c-~ 0,25 nJ111 pe6pa. OxnamaaeMOrO ecTecrBeHtioi7 KOtiBeK- 

ucreli, M npti c -0,25 ilntt pe6pa, tiarpesaeMor0 naMtittapHoti KoHneHcauHefi. B KOHue Hcnonb- 
3yeTcnnByxnapaMeTpwecKwC MCTO~ B03Mytuetitiih nnR onpenenetwrTeMnepaTypttor0 pacnpenene- 

HMR B pe6pe BCJtyVX KOHBCKTMBHO-KOHDYKTMBHO-pW,WN,,4OHHOrO TenJtOO6MCHa, KOl-Da KOX,,@,UMeHT 

TcnnonpoBontiocTti 3aBtictiT 0~ -r-eMneparypbr. PetueHMn, nOny’,eHHble MeTOIlOM B03MYU,eHMti, 

XOPOLUO COr.7aCytOTCSt C COOTBeTC.,-BYtOLUMMM ‘,t,C.“Ct,HbtMM ~eUEHtt%lM,,. 


