Int. J. Heat Mass Transfer. Vol. 19, pp. 271-276. Pergamon Press 1976. Printed in Great Britain

HEE

=z

EhE
s

x’y’
X, Y,

APPLICATION OF PERTURBATION TECHNIQUES
TO HEAT-TRANSFER PROBLEMS WITH VARIABLE
THERMAL PROPERTIES

A.Az1z and J. Y. BENZIES
College of Engineering, University of Riyadh, P.O. Box 800, Riyadh, Saudi Arabia

(Received 9 June 1975)

Abstract—The paper considers the application of regular parameter perturbation technique to obtain
approximate solutions of heat-transfer problems with temperature-dependent thermal properties. For
pure conduction, linearly varying thermal conductivity and heat capacity are considered and two examples
are solved. Next, a conducting—convecting fin is treated with convective heat-transfer coefficient propor-
tional to (AT)® with ¢ = 0-25 for fin cooled by natural convection and ¢= —0-25 for fin heated by
laminar condensation. Finally, a two-parameter perturbation is used to solve for temperature distribution
in a conducting—convecting-radiating fin with temperature-dependent thermal conductivity. On com-
paring the perturbation solutions with corresponding numerical solutions, the accuracy is found to be good.

NOMENCLATURE

cross-sectional area of fin;

heat capacity;

heat capacity at temperature To;

error function;

complementary error function;

fin parameter, = h, PL2/kA;

emissivity of fin surface;
nondimensional temperature, = T/Ty;
convective heat-transfer coefficient;
thermal conductivity;

thermal conductivity at zero temperature;
fin length;

a constant, equation (17);

a constant, equation (26);

fin parameter, = (h, PI2/kA)*;
perimeter of fin cross-section;

time;

temperature;

amplitude of sinusoidal temperature
variation;

function of #, equation (15);

function of #, equation (16);
transformed temperature, equation (7);
plate dimension;

rectangular coordinates;
nondimensional coordinates.

Greek symbols

B, a constant, equation (1);

Vs a constant, equation (10);

6, ¢, nondimensional temperature;

7, similarity variable, = x/2(kt/Co)*;
g, Stefan—~Boltzmann constant ;
&,€1,8, perturbation parameters.
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Subscripts
a, ambient;
s, effective sink;
b, fin base;
sat, saturated condensate.

INTRODUCTION

HEAT conduction with temperature dependent thermal
properties has been studied extensively and several
approximate methods of treating such problems are
available [1-3]. This paper adopts yet another ap-
proach and utilises regular parameter perturbation
procedure to obtain approximate solutions to heat
transfer problems with either temperature dependent
thermal conductivity or heat capacity or heat-transfer
coefficient. For pure conduction problems, examples
chosen to illustrate the procedure are two-dimensional
conduction in a square plate with Dirichlet boundary
conditions and linear thermal conductivity—tempera-
ture variation; and heat diffusion into a semi-infinite
medium with linear heat capacity-temperature depen-
dence. Next, a conducting—convecting straight fin is
considered, and temperature distribution is obtained
for the case of heat transfer coefficient proportional to
(AT)® with ¢ = 0-25 or 0-33 for fin cooled by natural
convection and ¢ = —0-25 for fin cooled by film boiling
or heated by laminar condensation.

The paper also adopts two-parameter perturbation
to treat problems with two independent nonlinearities
which for example arise for the case of simultaneous
variation of two thermal properties, or when radiation
interaction with one variable thermal property is in-
voked. The procedure is applied to obtain second-order
expansion solution for temperature distribution in a
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conducting-convecting-radiating fin with temperature
dependent thermal conductivity.

The perturbation solutions are compared with
numerical solutions and solutions based on other
methods and found to be sufficiently accurate.

PERTURBATION PROCEDURE AND EXAMPLES

In the examples that follow the mathematical details
have been kept to a minimum but further details are
available elsewhere [4].

(a) Two-dimensional, steady conduction in a square
plate with variable thermal conductivity
For two-dimensional, steady conduction in a square
plate with specified boundary temperatures (Fig. 1)
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FiG. 1. Temperature distribution in a square plate with
temperature-dependent thermal conductivity.

and thermal conductivity-temperature variation of
the form

k=ko(1+8T) (H

the Laplace equation may be written as

2 A2 2 2
a5 )3T o
with boundary conditions

000, Y)=0, 0(n,Y)=0, @A)

0(X,00=0, 8(X,n)=sinX

where
0=T/T,, X=nx/W, Y=ny/W, ¢=pT,. 4

For most materials and applications, ¢ is small and
a regular first order asymptotic expansion for 6 in the
perturbation parameter ¢ may be assumed as

0 = By +¢6,+ O(&3). (5)

Substituting (5) into (2) and comparing coefficients of
zero and unit powers of & equations for 6, and 6, with
appropriate boundary conditions can be obtained. The
complete first order solution is

0 sinh YsinX 2

¢ S

n=1.5 o n(n*—4)msinh? n
sinhnY
sinh n

sinh

X [(]—cosh27r) ——(1—cos2Y)]sinnX. (6)

Equations (2, 3), however, admit exact solution. By
introducing the Kirchoff transformation

8
V= j kdf = ko(0 +$e6%) (7)
0

into equations (2, 3) one can obtain a linear problem
in V. Employing the method of separation of variables,
the solution for ¥V is
sinh Ysin X
sinhn

1
nnil,;..,m
1 n sinhnY sinnX
{argPE] o
n n'—4 sinhnr

and the solution for 6 is
l 2eV\?
9={<1+i> 4}. 9)
€ ko ]

The perturbation temperature distributions at Y =
n/4 and Y = r/2 are compared with exact solutions in
Fig. 1. Excellent agreement is obtained even for ¢ as
large as 0-6. Although results are shown for positive
values of ¢, the same accuracy is obtained for negative
values of &.

(b) Transient heat diffusion into u semi-infinite medium
with variable heat capacity
The medium is assumed at temperature T = 0 for
time ¢ < 0 and its surface at x = 0 is suddenly changed
to Ty at 1=0. The thermal conductivity is taken
constant but the heat capacity is assumed to be of

the form
C = Co[1+9(T-T)]. (10)

The similarity equation for temperature distribution
together with boundary conditions is

Fr4+2p[1+e(F—=1)]F =0
n=0, F=1;

(11)

n=oc0, F=0 (12)

where
T

_ X
To’ n_z—lii*,
Co

and primes denote differentiation with respect to #.

As ¢ is usually small, the solution for F can be
assumed of the form of equation (5). Proceeding as
before, the solution for zero-order problem Fj is found
to be erfcn, which practically decays to zero for 5 = 3.
To effect the solution for the first-order problem F, in
closed form, the complementary error function rep-
resenting F, is replaced by a third-order least squares

F = e=7Ty (13)
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polynomial (accuracy +0-5 per cent) in the range
0 < 5 < 3and so is the boundary n = «o by n = 3. The
two-term perturbation solution thus obtained is

F = erfen+e[u+(v—0-3272)erfn] (14)

where
u = —0-8708%¢* + 0-6000n° — 0-1780n°
+0-025947" — 0001653 (15)
v = 0-87984°—028427* +0-031975.  (16)
The perturbation solution is plotted in Fig. 2 for ¢ = 0-5
together with solutions using optimal linearisation [3]

and variational method [S] and compared with the
numerical solution based on Runge-Kutta method.
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1 1G. 2. Temperature distribution in a semi-infinite solid
with temperature dependent heat capacity.

The perturbation solution is very close to numerical
solution but the linearised and variational solutions
are significantly in error. This is due to the fact that
the latter both employ quadratic approximation for F,
in generating the solution for F. This is rather poor
whereas the third order polynomial utilised in the
present work is a very accurate representation of Fy,.

(c) Conducting—convecting fin with variable
heat-transfer coefficient

A straight fin of length L, cross-sectional area 4 and
perimeter P exposed on both sides to free convective
environment at temperature 7T, is considered. The
commonly used boundary conditions of constant base
temperature 7, and adiabatic tip are assumed. The
thermal conductivity of the fin is taken constant while
the convective heat-transfer coefficient  is assumed to
be of the form

h=m(T-T,)* (17)

where m is a constant and &= 0-25 and 0-33 for
laminar and turbulent conditions respectively. Equa-
tion (17) is applicable to a horizontal fin but if the fin
is vertical, h also depends on coordinate x. Measuring
the axial distance from fin tip and using one-dimen-

sional approximation, equations governing the tem-
perature distribution can be written as

d*¢

——N29'* =0 18
ax: (18)
do
=0,—=0;, X=160=1 19
ax (19)
where
921—_7:" X=£, NZ=M,
T,—T, L kA
: (20)
hy = m(T,—T,)".

Since g1s small, § is assumed of the form of equation (5).
Further, expressing (6 +¢0,)° as exp[eln(f,+26;)] it
can be shown by expansion that

(B0 +¢0y)"

=1+elnfy+¢? [% +¥(In 00)2} +0(e%). (21
0

Proceeding as before and utilising (21), the solution for
zero-order problem 6, is found to be

Bo =sech NcoshNX. (22)

It is found that the equation for first-order problem
0, contains a nonhomogeneous term of the form
N2, 1n6, which according to (22) becomes

N?sech N(cosh NX Insech N 4 cosh NX In cosh NX)

in which the presence of the second term precludes
exact solution for 8,. In practice, N does not exceed 2
(optimum N = 1-4192 for minimum mass fin) and since
0 < X <1, the operating range of the fin is such that
0 < NX < 2. For this range, the function cosh NX In
cosh NX is approximated quite accurately by its eight-
order truncated Maclaurin's series. With this approxi-
mation, the solution for 6, is obtained. Thus, the
complete first order solution becomes

0 = sech NcoshNX
+&{C;coshNX + C, X sinhNX
—C,[84+42(NXY +H(NX)*
+360(NX)° +35ba(NX)®]}  (23)
where
C, = ¥sech? N(84+42N? + HN* + 5 NC + 555 N¥)
—+Ntanh Nsech Nlnsech N (24
C, =3NsechNinsechN, C;=4%sechN. (25)

The perturbation solution is displayed in Fig. 3 for
=025 and 033 curves 4 being for N = 1-0 and
curves B being for N = 2:0. Comparison with the
numerical solutions indicates high accuracy of the per-
turbation solution.

Consideration is now given to the case when the fin
is cooled by film boiling or heated by laminar conden-
sation. A horizontal fin of cross-sectional area A,
perimeter P and length L heated by laminar conden-
sation Is considered. The heat-transfer coefficient is of
the form

h=n(Tu—T)" 2% (26)
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F1G. 3. Temperature distribution in a conducting—convecting
fin with temperature dependent heat-transfer coefficient.

where T, is saturated condensate temperature and »
is a constant which can be determined using Nusselt—
Rohsenow theory [6]. The equation governing the
temperature distribution in the fin is

d%¢
—— —E¢p*=0 27
i Ed @
where
T;at_T X thLz
¢ = ., X=2, E=
’Eal_n L kA
(28)

hy = n(Ta = T)”7%*

and the coordinate x is measured from the base of
the fin.

Lienhard and Dhir [6] have recently considered this
problem and shown that for good fin design E = 0(10)
which gives a tip temperature of about 0-03 for adiabatic
tip condition. Hence, the boundary condition at the tip
may be approximated without much loss of accuracy
by that of infinitely long fin. Equation (27) is solved
subject to the boundary conditions

X=0,¢=1, X=o0, $=0. (29)

With E = N? and ¢ = —0-25, equation (18) is identical
to equation (27). Following the procedure adopted
previously, the two-term perturbation solution of equa-
tions (27 and 29) can be easily obtained as

¢ = [1 —EX(X + E*X¥)]exp(—EX).  (30)

The perturbation solution and numerical solution [6]
are shown as curves C in Fig. 3 and agree very closely.

(d) Conducting—convecting—radiating fin with variable
thermal conductivity
This example demonstrates the application of two-
parameter perturbation to a problem involving two

nonlinearities. Consider one-dimensional conduction
in a straight fin of length L, cross-sectional area A
and perimeter P, the surface heat transfer involving
simultaneous convection and radiation. Let the con-
vective environment temperature and effective sink
temperature be T, and 7;. Assuming the convective
heat-transfer coefficient /1 and surface emissivity E, to
be constant but allowing the thermal conductivity to
vary according to
k=k[1+8(T-T,)] (31)
the energy equation and boundary conditions (constant
base temperature T, and adiabatic tip) may be written as

d%6 do\?
[1+81(9—9a)]g)ﬁ+61< )

dx
=N} 0—0,) —e2(0*—6}) =0 (32)
dé
X=0—=0;, X=10=1 33
dX (33
where
T T T,
0= PR Ga = 05 ==
1 T, T
X_x Nz_hPLZ — B, (34)
T T A BT
E,6cT;’PL}
& = ~9—6k—bA—~ (radiation—conduction parameter).

As mentioned earlier, ¢, is usually small and for the case
of weak radiation-conduction interaction, &, is small.
Therefore, an asymptotic expansion for 8 in &, and &,
may be assumed as

or

J
g = Z Ejll‘ iﬁé Hi,j—i' (35)
J i=0

i

0

The case of 8, = 6, = 0 is considered. The solution for
the more general case can be obtained in a similar
manner though the algebra is somewhat lengthy.
Assuming second order expansion,

0 =000+2;001+£2810+800,+ 162611 +85050. (36)

Substituting (36) into (32) and (33), taking 6, =6, =0
and equating the appropriate coefficients, boundary
value problems for 649, 80¢1,...60,¢ can be obtained.
For brevity, only the solutions are presented. These are

foo = sech Ncosh NX 37
o1 = %sech? N[(cosh 2N sech N cosh NX
—cosh2NX)] (38)
h* N
010 = gsech [(1—$cosh2N

— #scosh4N)sech N cosh NX
+$cosh2NX +75cosh4NX—1] (39)

fo2 = £sech® N[($sech® N cosh? 2N —gsech N cosh 3N
—4 N tanh N)cosh NX —#%sech N cosh 2N cosh2NX
+8cosh3NX+3NXsinh NX] (40)
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5
0y = %E%TJY { —cosh 2N sech N + [$(3~% cosh 2N
—+x cosh4N)sech N cosh 2N +433 cosh 3N
+ g4 cosh 5N + £ N'sinh N]sech N cosh NX
—3(1 —%cosh 2N — i cosh4N)sech N cosh 2N X
—4%2 cosh 3N X + #ssech N cosh 2N cosh 4N X
— & cosh SNX —-#ZNXsinhNX} (4D
,sech’ N
00 =3 e
+ [(#—%cosh 2N — 75 cosh 4N + 145 cosh 2N cosh 4N
+ 4 cosh? 2N 4+ cosh? 4N)sech N 4125 cosh 3N
— 7335 cosh SN —gércosh 7N
+%5N sinh Nsech N] cosh NX
~ (3% cosh 2N + 35 cosh 4N —4)sech N cosh 2N X
— v cosh 3NX — (t3s cosh 2N +zggcosh N —)
x sech N cosh 4N X + 7335 cosh SNX +xdag
x coshTNX —H NXsinhNX}. (42)

{ cosh2N + #cosh4N —F)sech N

In Fig. 4 the second order perturbation solutions for
&, = 0-2 and 06 for various values of parameter ¢, are
compared with the corresponding numerical solutions,
the parameter N being fixed at unity. For ¢, = 0-2, the
perturbation solutions match almost exactly with
numerical solutions except for slight deviation for
gy = 0-6. As &, increases, the accuracy of the per-
turbation solutions decreases particularly at high
values of ¢;. But even at ¢; = 0-6 where the maximum
discrepancy occurs, the perturbation tip temperature
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F1G. 4. Temperature distribution in a conducting-convect-
ing-radiating fin with temperature dependent thermal con-
ductivity.

is still within 2 per cent of the numerical solution.
Further calculations show that the accuracy of the
perturbation solution increases as N increases and
decreases as N is reduced. Sparrow and Niewerth [7]
have found that for optimum operating conditions,
&, (N, in the notation of [7]) varies from 0-7 to 0 as
N {/N., in the notation of [ 7]) varies from 0 to 1-4192.
Hence, it is obvious that the perturbation solution
would yield accurate temperature distribution (and
hence heat flux and fin efficiency) over the major
portion of the range of optimum operating conditions.

CONCLUSIONS

The solutions for the first two sample problems have
shown that regular one-parameter perturbation tech-
nique can be usefully employed to treat conduction
problems with either temperature-dependent thermal
conductivity or heat capacity. The accuracy of the per-
turbation solutions compared with numerical solutions
was excellent. The technique also yielded very accurate
results when applied to fin cooled by natural convection
or heated by condensation with heat-transfer coefficient
proportional to fractional power of temperature differ-
ence. For problems with simultaneous variation of two
thermal properties or problems involving radiation
coupled with one variable thermal property, accurate
solutions can be obtained using the method of two-
parameter perturbation. The solution for temperature
distribution in a conducting—convecting-radiating fin
with temperature-dependent thermal conductivity has
confirmed the usefulness of this approach.
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APPLICATION DES TECHNIQUES DE PERTURBATIONS AUX PROBLEMES
DE TRANSFERT THERMIQUE AVEC PROPRIETES THERMIQUES VARIABLES

Résumé—L’article traite de P'application d’une technique de perturbation & paramétre régulier pour
I'obtention de solutions approchées de problémes de transfert thermique avec propriétés thermiques
dépendant de la température. Dans le cas de la conduction pure, on a considéré une conductivité thermique
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et une capacité calorifique variant linéairement et deux exemples sont résolus. Ensuite, on a traité le cas

d'une ailette en conduction-convection avec un coefficient de transfert par convection proportionnel 2

(AT) ou £ = 0,25 lorsque lailette est refroidie par convection naturelle et ¢ = 0,25 lorsque Tailette est

chauffée par condensation laminaire. Enfin, une perturbation & deux parameétres est utilisée pour trouver

la distribution de température dans une ailette a la fois conductrice, convectrice et rayonnante, avec une

conductivité thermique dépendant de la température. Une comparaison des solutions de perturbation avec
d’autres solution numériques montre un bon accord.

ANWENDUNG DER STOR-METHODE AUF WARMEUBERGANGSPROBLEME
MIT VERANDERLICHEN THERMISCHEN STOFFWERTEN

Zusammenfassung—Fir Ndherungslosungen von Wirmeiibergangsproblemen mit temperaturabhingigen
Stoffwerten wird die Anwendbarkeit der gewohnlichen Parameter-StSrmethode untersucht. Fiir Probleme
der reinen Wirmeleitung wurden linear-verdnderliche thermische Leitfihigkeit und Wirmekapazitit
herangezogen und zwei Beispiele geldst. Weiterhin wurde ein Leitungs-Konvektionsproblem behandelt
mit einem konvektiven Wiarmeubergangskoeffizienten proportional (AT)* mit ¢ = 0,25 fiir Rippenkiihlung
durch natiirliche Konvektion und &= —0,25 fiir Rippenheizung durch laminare Kondensation.
Schliesslich wurde die Zweiparameter-Stormethode verwendet fiir die Lésung der Temperaturverteilung
in einem Rippenproblem mit Leitung, Konvektion und Strahlung bei temperaturabhéngiger Warmeleit-
fahigkeit. Der Vergleich der Lésungen nach der Stérmethode mit entsprechenden numerischen Losungen
zeigt gute Ubereinstimmung.

MPUMEHEHUE METOJA BO3MYIUIEHWN JJisl PEIUEHUWSA 3A0AY
TETUIOMPOBOAHOCTUN C IMEPEMEHHBIMHM TETUIOBBIMW CBOMCTBAMU

Anmotauus — C rTOMOLLBIO METOAA PEryJIIPHOro BO3MYLLUEHHS NapaMeTpa MOJyYeHbl IPHOTHKEHHbIE
pelueHus 3aaay TenJONPOBOAHOCTH C 3aBUCHMbIMH OT TEMIIEPATYPbl TEIOBLIMHU CBOJicTBaMMU. [ng
ciyuast YUCTOH TENAOMPOBOAHOCTH PACCMOTPEHbI JTHHEHHO W3MEHsIolMeCs KOYPOULUNEHTHI TENNOo-
MIPOBOHOCTH M TEMJOEMKOCTH. YHCIIeHHO pelleHbl ABa nNpuMepa. [lanee, pacCMOTPeH KOHAYKTHBHO-
KOHBEKTHBHbIH TENN0OOMEH Ha TOBEPXHOCTH pedpa, korna KoYPGHUHEHT KOHBEKTUBHOrO TEMso-
obMmena mponopuunonasien (AT)" npu £=:0,25 ana pebpa, 0XNaXAaeMOro €CTECTBEHHON KOHBEK-
uueit, 1 npn ¢ - — 0,25 nna pebpa, HarpeBaemMoro JamMHHAPHOI KOHIAeHcalUueil. B xoHue HCnonb-
3yeTcsl AByXMapaMeTpHuecKknii METOA BO3MYLLIEHHH 11t ONIpeesieHUsl TEMIIEPATYPHOIO pacnpeaesie-
HHUs B pebpe B ciyyae KOHBEKTHBHO-KOHYKTHBHO-PAAWALIMOHHOTO TerJIooOMeHa, Koraa koshguuueHT
TCMJIONPOBOAHOCTH 3aBUCHT OT TEMMEPaTypbl. PelleHHs!, TONyYeHHblE METOAOM BO3MYILEHMUIA,
XOPOUIO COrAACYOTCH ¢ COOTBETCTBYIOIUMMH YUCIEHHBIMU DELIEHHAMU,



